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1. Description of the problem

For principal with many agents, the space of possible contracts is much

reacher than just the Cartesian product of individual (peace-rate) contracts

spaces. That is, the principal may find it profitable to induce the agents to

play a game by choosing their effort levels, not just to run several diversed

individual contracts. We will call such contracts by correlated incentive

schemes.

Exploiting correlated schemes, however, raise questions of implementabil-

ity. That is, the actual outcome of the second-stage game following a given

contract selected (and announced) by the principal may not coinside with

the one predicted. Hence, there is a quest for stable and unambigous solu-

tion concepts to be relied upon when the secon-stage game is being played.

One should take account of cooperation forces among the agents; Nash equi-

librium concept is rather too weak to rely upon, needless to say that there

may be several Nash equilibria.

Holmstrom (1982) was probably the first who studied team production

and correlated incentive schemes. Since and so far, the existing litera-

ture considered essentially only one type of correlated incentive contracts,

namely, rank-order contracts, or tournaments. These contracts are based

solely upon the comparison of individual outputs (the only thing that mat-

ters for a tournament is the agent’s rank, or his place in the list of outputs).

Mookherjee (1984) compared rank-order contracts with individual peace-

rate ones, and found that the former ones are welfare enhancing, comparing

to the latters. Malcomson (1986) provide additional motivation for analysing

the rank order contracts.
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However, there is a quest for studying more sophisticated incentive schemes,

not just tournaments or individual peace-rate contracts. There are two rea-

sons for that. The first is obvious: the space of all the incentive schemes for

the principal with many agents is much reacher than the joint of the two

types of contracts mentioned above. Hence, one may suggest that the set

of Pareto optimal contracts lies outside both classes just discussed (here,

Pareto optimality means that the effort level of no agent could be increased,

without decreasing the effort levels of some other agents).

The second reason was already mentioned above, and deals with the im-

plementation issue: rank-order contracts inplement too weak solution con-

cept in the second-stage game. Typically, it is just Nash equilibrium, and

which looks especially pessimistic, sometimes there are several of them (see

the literature cited above).

One could have assumed, following Mookherjee (1984), that the principal

could enforce a given equilibrium allocation (through the focal point effect),

but we proceed in another way. Namely, we will search for contracts that

implement a solution concept which is prone to coalition formations, and

essentially unique. Typically, such contracts will not dominate rank-order

ones, moreover, they often will be Pareto inferior to the latters, but their

inplementation will be unambigous. Then, we will discuss (second-best)

optimality of such contracts.

One would suggest that contracts which implement coalitionary stable

solutions may look too combersome to have any practical value. It turns

out, however, that these contracts were already introduced and studied, al-

though within a different framework. Namely, there is a vast literature on
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cooperative production and cost sharing mechanisms that pose questions of

implementation from a descriptive, positive viewpoint. That is, alternative

mechanisms are compared with respect to the quality of solution concept

they implement, regardless of any further consideration of efficiency prop-

erties of such mechanisms. The basic idea of this research is that the more

stable and unambiguous solution concept is being implemented by a given

mechanism, the better the mechanism is. Various concepts were proposed,

such as core allocations (Bagnoli and Lipman (1989), coalition-proof Nash

equilibria and Pareto-optimal Nash equilibria, dominance solvable equilib-

ria and, finally, strong equilibria. The latter, which is the most desirable, is

being implemented by the so-called serial cost sharing rule introduced by Lit-

tlechild, Owen (1973), and studied extensively in Moulin and Shenker (1992).

We adopt the apparatus of cost sharing theory to the principal-agent

relationships. In order to concentrate on implementation issues, we get rid of

the hidden information and moral hazard considerations, instead assuming

costly implementation of incentive schemes1.

Proceeding in this way, we first characterize the space of all contracts, or

incentive schemes, for the principal with n agents. Then, we introduce and

study a certain class of implementation schemes called multistep strategies

which resemble serial cost sharing rules used in Moulin and Shenker (1992).

Precisely, we adopt serial cost sharing of excludable public good from Moulin

(1994). Our schemes differ from Moulin’s in that there is no explicit cost
1Such an approach can be justified by the fact that, in many real situations, the problem

faced by the principal is rather not a problem of observability, but that of verification.

For instance, it is the case in the tax evasion practice, see Vasin, Panova (2000).

4



function lying at the base of them. This cost function is prescribed by

the contract, and is essentially discontinuous. In spite of these differences,

schemes we analyse still admit the unique strong equilibrium; however, dis-

continuity (hence, nonconvexity) of the underlying cost function makes the

apparatus used in Moulin (1994) inapplicable directly to our situation.

In analysing equilibria, we use techniques of monotone comparative stat-

ics analysis as in Milgrom and Shannon (1994). It is based on the theory of

complete lattices (see Topkis (1998), and Milgrom and Roberts (1990)). One

of the by-products of the analysis is a theorem on existence and uniqueness

of a strong equilibrium for games of a certain class (which includes second-

stage games following any multistep strategy implementation). This class

is intimately related to the class of supermodular games (see Milgrom and

Roberts (1990)), although one cannot state the inclusion in either direction.

We conclude our analysis by characterizing the Pareto optimal incentive

schemes for principal with heterogeneous agents, and reducing the problem

faced by the principal to the finite-dimentional maximization.

The paper proceeds as follows. Section 2 introduces the basic framework

for studying the many-agency problem, which is an n-inspection problem.

Section 3 introduces the class of multistep strategies, and discusses their

relation to serial cost sharing rules. Section 4 specifies a broad class of games

that will be demonstrated to have the unique strong equilibrium. Then,

we prove that multistep incentive schemes introduced in Section 3 induce

the second-stage game of this class. Section 5 begins with a discussion of

various solution concepts, and then states and proves the main theorem of

existence and (generally) uniqueness of a strong equilibrium for that class
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of games; moreover, it is demonstrated that this equilibrium is at the same

time the unique Pareto optimal Nash equilibrium, and the unique coalition-

proof Nash equilibrium. Section 6 applies the general analysis to a normative

question of Pareto optimality properties of implementation schemes (from

the principal’s viewpoint). Section 7 concludes.

2. n-inspection problem

A basic framework of our analysis is what we call the n-inspection problem.

There is a principal who hires several (n) agents for some task. Agents could

cheat to some degree z ∈ [0, 1], and the fact of cheating (and its degree, as

well) will be revealed by the principal. However, one and only one agent

could ultimately be checked and punished, due to lack of time, or to the

complexity of the punishment procedure; penalty is assumed to be linear in

the cheating parameter. One could treat punishment as a subtraction of the

corresponding share of a salary. The question is whether it is possible to

reduce cheating by designing (and committing to) a wise punishment scheme

which attains a probability distribution of being checked to every possible

profile of cheating parameters.

It is by no means the only possible model specification allowing to analyse

incentive schemes with many agents. For instance, we could have designed

an incentive scheme in terms of wages, instead of costs (i.e. penalties), as

it is done in e.g. Malcomson (1984). But it is instructive to operate with

costs, for on this way we will easily refer to serial cost sharing rules used

in Moulin (1994), as well as other public finance literature. In our model,

it is assumed that wages are fixed and sufficient to satisfy the participation
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constraint even at the no-cheating point. The approach we have chosen is

applicable to a number of real-world situations, like tax evasion, corruption

deterrence etc.

Returning to our basic model, let us assume that the game is two-staged:

at the first stage, the principal announces and commits himself to a certain

incentive scheme, or contract specifying checking probabilities, conditional

upon the profile of cheating parameters realized (hence, observed). Es-

sentially this contract is a mapping from the set [0, 1]n of all the possible

cheating profiles to the set ∆n of all the probability distributions over the n

points (i.e. agents):

λ : [0, 1]n → ∆n. (1)

The set of all such mappings reflects the principal’s strategic opportunities.

At the second stage, agents simultaneously choose their parameters of

cheating zi ∈ [0, 1]. Then, the payoffs are realized, and the principal faces

the profile q = (z1, . . . , zn) ∈ [0, 1]n (negatively) reflecting the efficiency of

the task fulfilled by the agents.

In order to complete the second-stage game description one should spec-

ify the agents’ preferences. We will assume the agents to be risk neutral, and

that their net benefits from cheating are characterized by benefits functions

bi(z) measured in the penalty units. We assume that these functions are

continuous, increasing, and satisfy the following property:

∀j > i, bj(z)− bi(z) is a nondecreasing function. (2)

This means that if one agent likes leasure more than another one, then the

more leasure is available, the greater this difference in pleasure will be. This
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holds if, for example, bi(z) are differentiable and ∀z b′j(z) > b′i(z), that is,

the marginal utility from leasure is also greater for the agent who appreciates

leasure more. One can notice that the agents are lineary ordered with respect

to the propensity to cheating, and this ordering coincides with the natural

ordering on the set n for which 1 < 2 < · · · < n.

Now, denoting by

λ(z1, . . . , zn) = (λ1, . . . , λn) ∈ ∆n (3)

the resulting probability distribution, we can conclude that the payoff to

i-th agent equals

ui(q) = ui(z1, . . . , zn) = bi(zi)− zi · λi. (4)

Recall that λi depends on q, hence, on zi as well.

The principal possesses a certain objective functional X(q), and tries

to maximize it by selecting out the best incentive scheme λ. We postpone

the discussion of the maximization problem faced by the principal until Sec-

tion 6, where we will apply the general theory to make normative statements.

Our next step is to analyse the second-stage game. In the following section

we introduce the subspace of multistep strategies, or incentive schemes, in

the set of all the contracts available to the principal.

3. Multistep strategies

There are at least four reasons for subtracting the set of all possible incentive

schemes. First of all, one can notice that the strategy set of the principal is

enormously large. Indeed, it contains all the mappings from [0, 1]n to ∆n,
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essentially including discontinuous ones (Pareto optimal strategies, as a rule,

will be discontinuous). Maximization of the principal’s objective functional

over such a set seems to be intracktable. Secondly, a principal’s strategy

should not look too complicated, in order to be apprehended by the agents

(recall that it is announced to the agents before they choose the degrees of

cheating).

Third and forth rationales for subtracting the strategy set were discussed

in introduction: they deal with solution concepts to be explored, and ques-

tions of uniqueness of equilibrium. Uniqueness is required because if pro-

posed solution concept admits several equilibria, the principal will typically

have a headache of guessing which of them will actually be realized. And, of

course, it is usually better to have a solution concept as strong as possible,

not just a concept of Nash equilibrium, for coalitional forces will probably

destroy it2.

We now introduce a class of strategies which we call multistep strategies.

All of them induce the second-stage game to have the strong Nash equilib-

rium, and in general, this equilibrium will be unique. A typical multistep

strategy consists of several threshold levels

0 ≤ z̄1 < · · · < z̄k < 1, (5)
2If agents are diversed from each other, and cooperation looks impossible, one could

implement Nash equilibrium solution. In this case, there is no problem at all within our

framework of symmetric information since, as could be easily checked, the first-ranking

contract implements the unique Nash equilibrium of no-cheating (this contract consists

in deterministic checking of the agent with the maximum cheating parameter, with the

equal-probablility gamble between all of them if they are numerous).
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and probability distribution

(A1, . . . , Ak) ∈ ∆k (6)

over the set of these thresholds (this is not λ’s, as will be explained below: λ’s

lie in ∆n). The better way to specify the multistep strategy corresponding

to these data is to tell a fairy tale.

Assume that during the day, the agents are separated to n rooms, and

could not observe what others do until the end of the day (in order to exclude

dynamics from the story). If a given agent chooses z ∈ [0, 1], he simply

sleeps first z percent of time, wakes up by alarm and works all the rest

day. According to the multistep strategy, the principal runs a gamble with

corresponding probabilities {Al, l = 1, . . . , k}, and in case of l-th outcome,

he enters all the rooms right after the moment z̄l of time. Then, he randomly

penalizes one of the agents who is still sleeping, and precisely according to

his choice, z (known to the principal, say, from alarm clock at the agent’s

table).

This story has nothing to do with the real situation, but it helps to

become aquainted with the effect of a multistep strategy’s implementation.

Those who are familiar with Moulin and Shenker (1992) could find that

incentive schemes we propose resemble the serial cost sharing principle. This

becomes clear from their explanation of serial cost sharing in terms of a

“turning lights” story. Strategic properties of serial cost sharing also are

close to ours, though not completely coinside with the formers. Namely, our

multistep strategies generate multiple Nash equilibria, hence, the predicted

outcome of the second-stage game will not be dominance solvable3.
3I ought the idea that multistep strategies are essentially cost sharing rules to Shlomo

10



The most closely connected to ours are serial cost sharing rules for public

goods provision in Moulin (1994). To explain why, let us interpret checking

probabilities assigned to agents as costs of cheating. Then, we have the

following symbolic picture: agents should bear together costs of producing

the maximal cheating parameter from the collection q = (z1, . . . , zn). Costs

are stepwise: it costs Al to produce any additional amount δz ∈ (0, z̄l+1− z̄l]

above z̄l (where we set z̄n+1 := 1). Costs are then divided exactly as in

Moulin (1994). The specification of the cost function is a strategic choice

of the principal. The only problem is nonconvexity and discontinuity of any

cost function constructed on this way.

Now, we could easily formalize multistep strategies, directly adopting

formulas from Moulin (1994). Probabilities λi depend on the parameters of

a multistep strategy in the following way:

λi =
∑

{l:z̄l<zi}

Al
#{j : z̄l < zj}

. (7)

That is, agents with z > z̄l divide together costs Al for increasing the cheat-

ing degree above the threshold zl. Together with the formula (4), this com-

pletes the description of the second-stage game implemented by a typical

multistep strategy. Next section introduces a class of games which postu-

lates axiomatically the properties shared by payoff functions of any such

game.

Weber.
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4. Supermodular iterative monotone games

Consider a game Γ of n players. The set of all the players is denoted by

N = {1, 2, . . . , n}. Let a strategy set of all players be one and the same

compact subset Z ∈ R (for instance, a closed segment, like [0, 1]). Denote

by q ∈ Zn the profile of strategies chosen by the agents, q = (z1, . . . , zn),

and by q−i ∈ Zn−1 the profile of strategies chosen by agents other than i.

The set Zk inherits an ordering from the set Z (which looses its linearity for

k ≥ 2), and forms a complete lattice, with respect to this partial ordering.

Besides, we will need to preserve the linear ordering of the set N of the

players (or agents, synomically). It gives us a right to say that a profile

q = (z1, . . . , zn) is monotone if z1 ≤ · · · ≤ zn. The set < of monotone

profiles also forms a complete lattice (trivial exercise). Also, we denote by

q− a monotone profile of (n− 1) strategies.

The definition given below encorporates the main constructions and ideas

of monotone comparative statics theory (see Milgrom and Shannon (1994),

Topkis (1998), and Milgrom and Roberts (1990)), with those from Moulin

and Shenker (1992) inspired by the idea of defining serial cost sharing rules

axiomatically.

Definition. The game described below is called a Supermodular It-

erative Monotone game (or, simply, a SIM-game) iff the payoff functions

ui(z1, . . . , zn) = ui(zi; q−i) satisfy the following five properties.

1. Anonimuity. ∀i u(zi; q−i) depends only on the collection

q− = {zj |j 6= i} ∈ Zn−1, (8)

that is, does not change under permutations of the other agents. (In
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other words: it does not matter for Lesha whether Masha chooses z

and Ira chooses w, or vise-versa.)

This condition is adopted from Moulin and Shenker (1992) where it

was used for a characterization of serial cost sharing. We therefore

could write u(zi; q−) instead of u(zi; q−i), where q− denotes a monotone

transformation of q−i. Moreover, it will be useful to rewrite payoff

functions in the form of only one function u(z; [i, q−]). In what follows,

“>” means “� , but not =”.

2. Weak Single crossing property (WSCP) in (z; [i, q−]). Exactly

as in Milgrom and Shannon (1994): for z′ > z and (j, q′−) � (i, q−), if

u(z′; [i, q−]) ≥ u(z; [i, q−]) (9)

then

u(z′; [j, q′−]) ≥ u(z; [j, q′−]). (10)

This property (precisely, its strong form) is crucial for well-behaving

comparative statics, as shown in Milgrom, Shannon (1994); we will

need its relaxed analogue for monotonic properties of agents’ choices.

3. Monotonicity. ∀z ∈ Z and (j, q′−) � (i, q−) we have

u(z; [j, q′−]) ≥ u(z; [i, q−]). (11)

This resembles the “complementarity” of choices made by different

agents (compare with Milgrom and Roberts (1990)), and, at the same

time, the fact that agents with high indices occupate better positions

than those with low ones. This assumption will guarantee monotonic

properties of the agents’ payoffs.
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4. Ordinal semi-dependence, or Iterativity. Together with the first

property, this one is being taken from Moulin and Shenker (1992): a

payoff ui of i-th agent does not depend on the choices not lower than

his own choice. Formally, let us denote by qz− the profile q− in which

all the components higher than z are replaced by z. Then, we require

that ∀i

ui(z, q−) = ui(z, qz−). (12)

In Moulin and Shenker (1992), this assumption was placed on cost

sharing rules; we switch it directly to the payoff functions.

Note that continuity is not required, and in fact, payoff functions arose

from the n-inspection problem will be discontinuous. We therefore

need a regularity condition which will guarantee that individual max-

imization problems nonempty and nicely-behaved solution sets. Such

a condition is well-known for this sort of models, and essentially states

that the function evaluated on the limit of a monotone sequence is not

lower than the limit of its valuations on the terms of this sequence.

5. Regularity condition. Payoff function u(z; [i, q−]), being considered

as a function of z ∈ Z, is an order upper semi-continuous (see precise

formulation in Milgrom and Roberts (1990)).

This regularity condition is fulfilled, for example, if payoff functions are

continuous except for a finite number of jumps down, and are left-side

continuous in the points of jumps (a mathematical triviality). It turns

out that all these properties are satisfied for the second-stage game of

the n-inspection problem with a multistep strategy implemented by
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the principal. This property completes the definition of a SIM-game.

Theorem 1 For any multistep strategy (5), (6), the second-stage game of

the n-inspection problem is a SIM-game with Z = [0, 1].

Proof is given in Appendix, together with the graphical illustration and

a discussion of an agent’s maximization problem.

5. Existence and uniqueness of a strong equilibrium

for SIM-games

Various solution concepts purifying Nash equilibrium

There are many solution concepts strengthening the notion of Nash equi-

librium. The commong problem most of them share is the generic non-

existence. As for Nash equilibrium, it typically exists, at least in convex

situations, because there are “the same number of” equations determining

them and variables to be determined. As for strengthening solutions, they

exist only under serious assumptions on the game form.

At the same time, if the family of games is under consideration, and

if this family is reach enough, there is a hope that some games within the

family have nonempty sets of solutions that are stronger than Nash equi-

librium. Our n-inspection story is an example: in the huge set of all the

possible incentive schemes for principal with many agents, there is a sub-

set of contracts that implement coalitionary proof solutions, namely, those

resulting in SIM-games at the second stage. Before analysing these SIM-

games, let us discuss various strengthenings (or purifications of the notion

of Nash equilibrium. We begin with the strongest solution concept.
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Strong equilibrium (SE). This notion was first introduced by Au-

mann (1959). A given allocation is said to form a strong equilibrium if there

are no coalitions of agents that could simultaneously change the strategies

of its members so as to increase the payoffs for all of them, given that other

agents hold on using strategies of the initial allocation. If no coalition could

increase the payoff of even one of its members holding others at the initial

level of utility, we call such an allocation superstrong equilibrium (SSE). This

is probably the most stable and unambiguous solution concept for one-shot

games. If the principal implements the scheme characterized by the only SE

in the second-stage game, he can safely predict the outcome of this game to

coincide with this SE.

Pareto optimal Nash Equilibrium (PONE). This simply claims

that, gethering altogether, agents could not do better for all of them then

in the Nash equilibrium allocation. If they could not increase the utility of

even one of them holding others at the initial level of utility, this is the strong

PONE, or simply SPONE. Every SE is at the same time PONE, and SSE

is SPONE. In PONE (and SPONE), the only working coalitions is the vast

majority plus individuals; in Nash equilibrium, the only working coalitions

are individuals. In the celebrated Prizonner’s Dilemma, there are no PONE,

neither SPONE (hence, neither SSE and SE): the only (dominance-solvable)

Nash equilibrium is not Pareto optimal.

Coalition-proof Nash equilibrium (CPNE). This notion is close to

the SE (or SSE), and differs in that it allows only those coalition formations

that are self-sustainable: coalition proposing better outcomes to their partic-

ipants should not generate stimula for second-round group deviations, again
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provided the latters are sustainable. The formal definition bears the induc-

tive nature, and could be found in pioneering work by Bernheim, Whinston

and Peleg (1987). Notice that, defining CPNE, we require that coalitions

offer strict increases in utility to all their participants. Every SE is a CPNE,

whereas there is no inclusion between CPNE and PONE sets, in general.

A disussion of various solution concepts of cooperative game theory also

could be found in Ichiishi (1993). One probably finds it difficult to cope

with all these notions and their interrelations. Fortunately, there is no need

in such an inquirry now: it turns out that every SIM-game have a (gener-

ally, unique) strong equilibrium (SE) which, in addition, could be obtained

iteratively by a very simple, straightforward procedure.

SIM-games: existence of a strong equilibrium

We begin our analysis of SIM-games by the following statement.

Lemma 1 In every SIM-game, the agent’s payoff function u(z; [i, q−]) has

a nonempty set f [i, q−] of argmaxima, for all pairs (i, q−) ∈ N×Zn−1. This

set f [i, q−] forms a complete sublattice in Z. As a consequence, there always

exists a maximum in this set, which we call z[i, q−]: ∀(i, q−) ∈ N × Zn−1

∀z ∈ Z u(z[i, q−]; [i, q−]) ≥ u(z; [i, q−]), and

∀z > z[i, q−] u(z[i, q−]; [i, q−]) > u(z; [i, q−]).
(13)

Proof could be found in Milgrom and Roberts (1990).

Next, we conduct the comparative statics with respect to [i, q−], that is,

analyse the responce functions z[i, q−] introduced above.

17



Lemma 2 The function z[i, q−] is nondecreasing with respect to both argu-

ments (or equivalently, being considered as a function over the partially or-

dered set N×Zn−1), and so is the induced payoff function u(z[i, q−]; [i, q−]).

Proof is a trivial consequence of the monotonicity and WSCP properties.

For instance, to prove monotonicity of z[i, q−], one needs to replace z′ =

z[i, q−] in WSCP, which gives us that for [j, q′−] ≥ [i, q−], z[i, q−] is at least

as good as z < z[i, q−], hence, z[j, q′−] ≥ z[i, q−] (recall the definition of a

function z[i, q−] as the maximum of argmaxima set f [i, q−]). The same for

utility, using standard envelope argument.

Various modifications of this obvious assertion could be found in Top-

kis (1978), who is probably the first to state this property explicitely. One

corollary of this result is very important.

Corollary. The mapping f̄ : Zn → Zn, defined by

f̄(q) := (z[1, q−1], . . . , z[n, q−n]), (14)

is a monotone transformation of a complete lattice Zn.

Now we apply the celebrated Birkgoff —Knaster —Tarski theorem to

the mapping f̄ : Zn → Zn.

Theorem 2 For any complete lattice H and its monotone transformation

h, the set of fixed points is nonempty, and forms a complete sublattice in H.

The SUP of the sublattice of equilibria is a transfinite limit of a sequence

SUP (H)→ h(SUP (H))→ h2(SUP (H))→ . . . .

Proof could be found in Tarski (1955), or in Topkis (1998).
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This gives us the existence theorem for Nash equilibria, since obviously

every fixed point of the mapping f̄ is a Nash equilibrium. The reverse is not

true, because f̄ is not a best-responce correspondence but just a maximal best

responce function. We introduce the whole best responce correspondence by

f(q) := f [1, q1]× · · · × f [n, qn] ⊂ Zn (15)

where f [i, q−] is the argmaximum set of u(z; [i, q−]), with respect to z. Nash

equilibria are precisely fixpoints of this correspondence. Denote by q∗ the

SUP of the lattice of all the fixpoints of the mapping f̄ . The following lemma

asserts that q∗ is the SUP of the set of all Nash equilibria.

Lemma 3 For every Nash equilibrium q̃ ∈ Zn we have q∗ � q̃.

Proof. If q̃ is an equilibrium, it means that q̃ ∈ f(q), with f̄(q) obviously

being the SUP of the set f(q). Hence, we have that f̄(q̃) � q̃. Apply-

ing transfinite times f̄ to the obvious inequality I � q̃ and taking transfi-

nite limits (see Topkis (1998)), we obtain the required property (recall that

translim(f̄ t(I)) coinsides with q∗).

Turning to the next item, we state the basic proposition, which proof is

complicated and postponed until the Appendix.

Lemma 4 The maximal equilibrium q∗ = (z∗1 , . . . , z
∗
n) could be obtained

through the following iterative inductive procedure (in the first string, [1;. . . ]

means that this is the best responce of the agent 1 to the profile q− =

(S, . . . , S) ∈ ZN−1, where S = SUP (Z); other strings being treated by the

19



analogy. We have I = (S, . . . , S)):

z∗1 = z[1;S, . . . , S];

z∗2 = z[2; z∗1 , S, . . . , S];

. . . . . .

z∗k = z[k; z∗1 , . . . , z
∗
k−1, S, . . . , S];

. . . . . .

z∗N = z[N ; z∗1 , . . . , z
∗
N−1].

(16)

Notice that it is not the iterative process I → f̄(I) → f̄(f̄(I)) . . . . For

the calculational purposes, the process in (16) is much more convenient. It

turns out that its theoretical value is great as well: it is a powerful technical

tool. Armed with this tool, let us turn to the next item.

Lemma 5 The maximal equilibrium q∗ is at least as good for all the agents

as any allocation q = (z1, . . . , zN ) such that q � q∗, hence, as any other

equilibrium allocation.

Proof. Indeed, we have the following chain of inequalities ∀i:

ui(zi; q−i) ≤ ui(zi; q∗−i) ≤ ui(z∗i ; q∗i ), (17)

of which the former one is stated in lemma 2, while the latter expresses the

equilibrium nature of q∗.

Next theorem is the basic result of the paper.

Theorem 3 The maximal equilibrium q∗ is a superstrong equilibrium of any

SIM-game.
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Proof. To prove that q∗ is an SSE, assume that there is a coalition

J ⊂ N of deviators, and values {z′i| i ∈ J} of strategies for its members such

that, ∀i ∈ J ,

ui(z′i; q
′
−i) ≥ ui(q∗), (18)

with at least one strict inequality (by q′ we denote the allocation ({z′i| i ∈

J}; {z∗i | i /∈ J})). Take the first agent i ∈ J who increases his choice:

z′i > z∗i , and z′j ≤ z∗j ∀j < i (provided such agents ever exist). For this

agent one has the following contradiction:

ui(z′i; q
′
−i) ≤ ui(z′i; z∗1 , . . . , z∗i−1, S, . . . , S) <

< ui(z∗i ; z∗1 , . . . , z
∗
i−1, S, . . . , S) = ui(q∗).

(19)

Let us comment on this. First inequality follows from the fact that the

profile from Zn−1 in the second term is by-componently not lower than the

profile q′−i, by the definition of i; second stems from the fact that z∗i is

a maximal best responce to (z∗1 , . . . , z
∗
i−1, S, . . . , S), by the construction of

lemma 4. The last is the ordinal semi-dependence property.

It means that there are no agents whose strategy z′i > z∗i . But in this

case, we have q′ � q∗, and so, q∗ is at least as good as q′ for all the agents,

hence, ∀i ∈ J as well. So, there are no possibilities to collude and block the

allocation q∗. The proof of theorem 2 is complete.

Corollary. The sets of SE, PONE, SPONE and CPNE are all non-

empty and contain a maximal element (which is q∗).

Indeed, any SSE belongs to every set mentioned above, so all of them

contain q∗. At the other hand, all these sets itself are subsets of the set NE

of all the Nash equilibria, of which q∗ is a supremum.
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Questions of uniqueness

Let us now turn to the question of uniqueness of equilibrium. To start with,

we state the following proposition which is a direct sequence of monotonicity

and WSCP properties.

Lemma 6 In the SSE q∗, the first agent attains absolute (i.e. first-best)

maximum of utility. Inductively, every agent i attains his second-best max-

imum of utility, constrained by the fact that first (i− 1) agents attain their

second-best in a similar fascion (with the first one attaining his first-best).

This lemma leaves us without a hope that q∗ could be a unique PONE:

every allocation (z∗1 , . . . , z
∗
i , z
∗
i , . . . , z

∗
i ) is a PONE (generally) because the

attempt to increase individually the degree z over common z∗i -value results

in a very high probability of checking, hence, it is unprofitable; so, such an

allocation typically is a Nash equilibrium. And this equilibrium is Pareto

optimal since the first i agents attain their constrained maximal utility levels,

as in the allocation q∗.

However, such an allocation generally is not a SPONE: switching to-

gether to q∗ does not decrease utilities of all the agents, and, provided some

regularity conditions hold, increase the utilities of the agents i + 1, . . . , n.

These conditions are summarized in the following theorem of uniqueness.
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Theorem 4 Assume that all the sets

f [1;S, . . . , S];

f [2; z∗1 , S, . . . , S];

. . . . . .

f [k; z∗1 , . . . , z
∗
k−1, S, . . . , S];

. . . . . .

f [N ; z∗1 , . . . , z
∗
N−1]

(20)

are single-valued (the so-called First Regularity Condition, or FRC); and

that the function u(z; [i, q−]) is strictly increasing in those components of q−

that are lower than z (this is Second Regularity Condition, or SRC). Then,

all the sets SSE, SE, SPONE and CPNE are single-valued.

Proof is straitforward: Given an allocation q̃ which is a candidate for

SSE, SE, SPONE or CPNE, we find the first agent i whose z̃i < z∗i (recall

that q̃ � q∗, since at least q̃ pretends to be a Nash equilibrium). Then, we

form a coalition of (i+ 1, . . . , n) and offer them their equilibrium strategies

z∗j . In this case, it is easy to check that FRC and SRC imply the strict

increase in the utility level of all the coalition members. For CPNE, we

need to establish additionally that the new allocation is sustainable. But the

strategies for deviators are SSE-allocation strategies, hence, form a CPNE.

Proof is over.

6. Optimal multistep strategies

Let us now turn back to the N -inspection problem, and analyse strategic

opportunities of the principal. First of all, let us discuss the uniqueness
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properties for this application. It turns that FRC is typically satisfied for

the n-inspection problem.

Lemma 7 Except for a subset of measure 0, all the multistep strategies

induce a second-stage game satisfying FRC.

Proof is purely mathematical: we notice that every condition on the set

f [i; q−] to be single-valued is a (nongenerate) equation on the data (5), (6).

A standard calculus concludes the proof.

As for SRC, generally it does not hold for the n-inspection problem.

The obstacle is a stepwise character of the utility functions. Nevertheless, it

could be replaced by the requirement that every set f [i, q−] contains no more

than one point within every interval (z̄l, z̄l+1]. It turns out that, under quite

natural conditions, this is satisfied with probability one. Below is presented

a result whose proof is analogously purely mathematical and is skipped.

Theorem 5 If every benefit function bi(z) is iether convex or concave on

[0, 1], then, except for null-set, all the correspondences SE, SSE, SPONE,

and CPNE are single-valued (being defined over the set of all multistep

strategies).

Now we are going to analyse the optimal multistep strategies. No matter

which objective functional X(q) is being used, a question arises concerning

the Pareto-efficiency of a given strategy: whether it is the least costly (and

the easiest) way to implement a given profile, q. The next (and the last)

theorem answers to this question.
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Theorem 6 For every SSE profile q∗ of a multistep strategy (5), (6) the

following N -stepped strategy (z∗1 , . . . , z
∗
N ; Ā1, . . . , ĀN ) implements a profile

q̃∗ � q∗ (possibly, coinciding with the latter):

Āi =
∑

z̄l∈[z∗i ,z
∗
i+1)

Al, (21)

Proof consists of applying the iterative procedure of lemma 4 step by

step, and involving inductive argument. See Savvateev (2003).

Corollary. In characterizing Pareto optimal multistep strategies for

principal with N agents, it is sufficient to consider the (2N −1)-dimensional

manifold (to be more precise, a manifold with corners) of N -stepped strate-

gies.

This corollary allows to reformulate the problem of choosing the optimal

strategy of the principal as the finite-dimentional maximization, whatever

functional X(q) is being used. Even without further research, one can design

at least a computer program. Namely, we take a sufficiently frequent net

on the (2N − 1)-dimentional cube, and for every vertex of this net the

iterative process is conducted which results in the strong Nash equilibrium

corresponding to that vertex (i.e. to the following strategy of the principal).

According to Theorem 3, this process requires maximum N iterations. Once

equilibrium is approached, the objective functional is applied to it, and then

the best strategy is being selected.

Special cases N = 1 and N = 2 are solved in Savvateev (2003) explicitely.

Also, one can find there a complete characterization of implementable al-

locations q∗, and a system of equations characterizing the multistep strat-

egy implementing a given allocation q∗, if it is implementable. However,
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to perform such an analysis, we need an additional assumption that ben-

efits functions are linear in the cheating parameter: bi(z) = bi · z, where

b1 ≤ · · · ≤ bN . It is assumed, further on, that the principal observes the

bundle (b1, . . . , bN ), but not individual characteristics bi for every agent.

Interesting aspects arise on this way concerning the so-called chain-

reaction effect which is responsible for the implementability of a given allo-

cation. This effect has various policy implications (see Savvateev (2003)).

7. Conclusion

In the paper, a principal-agent model with many agents is analysed which

is free of informational assymetries. The primary focus was made on the

nature of a strategic space of the principal, especially on its useful subspace

of the so-called multistep incentive schemes. These schemes generally induce

the unique strong equilibrium allocation in the game that is played by the

agents when they choose their effort levels.

Also, the conditions guaranteeing the existence and the uniqueness of

the strong equilibrium, as well as of some alternative solution concepts, are

generalized and presented in a purely game-theoretic form. The kind of

games under study are in a close connection with a supermodular games

studied in the literature on comparative statics. Additional assumptions

made came from the serial cost sharing method used in a public finance

literature. It is the combination of these two approaches that results in the

existence and uniqueness of a strong equilibrium.

After the general game-theoretic analysis, the principal-agent framework

with many agents is reconsidered, and Pareto optimal incentive schemes are
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characterized. It turns out that, despite the huge and intractable nature of

the space of all the incentive schemes, the set of Pareto optimal multistep

contracts is a finite-dimentional and easily observable submanifold.

Also, iterative procedure is described for obtaining the strong equilibrium

for any multistep strategy. This procedure both helps a lot in theoretical

investigation of the games under study, and provides a way to solve for the

optimal incentive scheme numerically, given a specific form of an objective

functional of the principal. Possible applications of the theory are given.

Appendix

Proof of theorem 1. For convenience, we reproduce here formulas specifying the

sort of games under study. Payoffs are given by

ui(q) = ui(z1, . . . , zN ) = bi(zi)− zi · λi(z1, . . . , zN ), (22)

where λi is being determined by the parameters of a multistep strategy through

the following formula

λi =
∑

{l:z̄l<zi}

Al
#{j : z̄l < zj}

. (23)

We need to prove that the game specified by (22) and (23) satisfy 5 properties

of section 4. Let us start with the regularity condition. Namely, we will show that

payoff functions are continuus elsewhere except for points zl, l = 1, 2, . . . , k where

it experiences a jump down, and is left-side continuous at these points. As was

mentioned in Section 4, this is sufficient for order upper semi-continuity.

The proof is a graphical one. The figure 1a below illustrates the components of

the payoff function of i-th agent as a function of his choice variable, z (for the case of

a two-stepped incentive scheme [(z1, z2); (A1, A2)]). The continuous line starting

at zero-point represents his benefits function, bi(z). The cost function, which is

z · λ(z; q−), is peacewise linear but discontinuous, and has jumps up exactly at
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threshold levels z1 and z2. The resulting payoff function is demonstrated at the

figure 1b, and it is apparent that it satisfies the required property.

-6 -

6

z

b(z),
z · λ(z; q−)

��
��
�1

6
�
�
�
�
��

z̄1 z̄2 1 -

6

z

u(z; [i, q−])

z̄1 z̄2 1

Figure 1a. Components Figure 1b. A typical

of a payoff function payoff function

Let us now turn to the first four properties. As for the anonimuity, it follows

from formulas (22), (23) immediately, since the only thing that matters is the

numbers of agents choosing cheating degrees within the corresponding intervals.

The same with the ordinal semi-dependence (or iterativity). Every term in (23)

with z̄l < zi will not be altered if those who choose z ≥ zi will switch to z = zi

instead, whereas other terms equal zero.

Let us prove the monotonicity of the payoff functions. If one changes agent i to

j > i holding q− unaltered, the balance equals bj(z)− bi(z) and is nonnegative, by

the definition. If, alternvely, we switch from q− to q′− � q−, this makes every term

in (23) nonincreasing, for the numerator holds the same while the denominator

could only increase (given z̄l, the number of the agents whose choices exceed z̄l

increases or remains the same). Therefore, λi nonincreases, which implies that
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ui(z; q−) nondecreases.

As for the WSCP, consider z′ > z. If we have u(z′; [i, q−]) ≥ u(z; [i, q−]), it

means that

bi(z′)− bi(z) + zλi(z; q−)− z′λi(z′; q−) ≥ 0. (24)

Actually λi does depend only on its argument, and not on i, thus decomposing the

proof into two distinct parts: increasing i to j > i, and increased q− to q′− � q−.

Increasing i is a simple case: by the assumption, the function bj(z) − bi(z) is

nondecreasing in z, so we have

bj(z′)− bi(z′) ≥ bj(z)− bi(z) ⇔ bj(z′)− bj(z) ≥ bi(z′)− bi(z). (25)

Increasing q− requires a little more work. Our goal again is to establish that

(omitting index i, due to already proved anonimuity)

zλ(z; q′−)− z′λ(z′; q′−) ≥ zλ(z; q−)− z′λ(z′; q−). (26)

Rearranging, one can see that this is equivalent to

z′(λ(z′; q−)− λ(z′; q′−)) ≥ z(λ(z; q−)− λ(z; q′−). (27)

As z′ > z, it is sufficient to demonstrate that expressions in brackets are compared

to the needed direction. Both present a sum of several members of a type

Al
#{j : z̄l < zj}

− Al
#{j : z̄l < z′j}

, (28)

and notice that all these terms are nonnegative, due to the argument used to prove

monotonicity. Moreover, these terms are identical in both sides of (27)! The only

difference consists in their numericity: the LHS of (27) contains not less of them,

since z′ > z. So, increasing q− also results in increase of the term in (24) it responds

for. Summing up, we conclude that (24) nondecreases when switching from [i, q−]

to [j, q′−] ≥ [i, q−]. Hence, it is still nonnegative. WSCP property is established.

The proof of theorem 1 is complete.
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Proof of lemma 4. We first prove that the allocation (z∗1 , . . . , z
∗
n) defined by

the iterative procedure (16) is a monotone profile. We proceed inductively: assume

that the sub-profile (z∗1 , . . . , z
∗
i ) is monotone, and consider z∗i+1. We have

z∗i+1 = z[i+ 1; z∗1 , . . . , z
∗
i , S, . . . , S] ≥

z[i; z∗1 , . . . , z
∗
i , S, . . . , S] = z[i; z∗1 , . . . , z

∗
i−1, S, . . . , S] = z∗i ,

(29)

where the last equality follows easily from ordinal semi-dependence axiom, in a way

similar to that used in proving theorem 3.

Now, we establish that the allocation (z∗1 , . . . , z
∗
n) is a Nash equilibrium. Again,

we use the same argument: inductively, and using monotonicity, we have that

z∗i = z[i; z∗1 , . . . , z
∗
i , S, . . . , S] = z[i; z∗1 , . . . , z

∗
i−1, z

∗
i , . . . , z

∗
i ] =

z[i; z∗1 , . . . , z
∗
i−1, z

∗
i+1, . . . , z

∗
n].

(30)

And lastly, we will prove (again, inductively) that the allocation q∗ � q̃ for

every Nash equilibrium allocation q̃. Namely, if it is proved that z∗j ≥ z̃j for

j = 1, . . . , i− 1, then

z∗i = z[i; z∗1 , . . . , z
∗
i−1, S, . . . , S] ≥

z[i; z̃1, . . . , z̃i−1, z̃i+1, . . . , z̃n] ≥ z̃i,
(31)

because z[i; q−i] = max{f [i; q̃−i]}, and z̃i ∈ f [i; q̃−i].

Summing up, we have proved that q∗, obtained by the inductive procedure (16),

is the maximal Nash equilibrium. Proof of lemma 4 is complete.
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